Put a check ✓ in the o next to the correct answer.

1. You attach a 10 inch arm to your robot using a motor to raise and lower the arm. The motor can produce 7 ft·lb of torque. You hook and attempt to lift an 8 lb box. Can you lift it?
 - Yes, 6.67 ft·lb of torque is required
 - Yes, 0.86 ft·lb of torque is required
 - No, 14 ft·lb of torque is required
 - No, 80 ft·lb of torque is required
 - No, 5.83 ft·lb of torque is required

2. Find the value of \(l \), the length of the right side of the lever, for which the 7 lb will hold the 50 lb steadily. Select the best answer for \(l \).

 \[
 \begin{align*}
 \text{50 lb} & \\
 \text{1.5 ft} & \\
 \text{7 lb} & \\
 \hline
 \end{align*}
 \]
 - 10.7 ft
 - 22 ft
 - 75 ft
 - 3.5 ft
 - 7.1 ft
3. Force F will cause what kind of moment about point P?

- Positive moment
- Negative moment
- Centrifical moment
- Forced moment

4. A torque only tightens, it never loosens.
 - True
 - False

5. When an object is in static equilibrium, then we know the sum of all the moments due to external forces on the object, summed at a point P is ...
 - Equal to zero
 - Equal to the sum of moments due to internal forces
 - Doesn’t exist
 - Equal to the objects mass moment of inertia
 - Equal to the sum of the external forces
6. Force F is 10 pounds. What is the magnitude of the moment due to F about point P?

- 72.5 in\(\times\)lb
- 72.5 ft\(\times\)lb
- 27.5 in\(\times\)lb
- 27.5 ft\(\times\)lb
- 77.5 in\(\times\)lb

7. The perpendicular distance, \(d\), in the torque equation must always be measured in feet in the U.S. customary system, or meters in the metric system.

- True
- False
8. The wheelbarrow is loaded. Forces exist for weight \(W \), lift \(F \), and normal reactions at points \(A \) and \(B \), \(A \) and \(B \). Which forces contribute to the moment about the axel of the wheel?

- \(F,W,A \)
- \(F,W,A,B \)
- \(F,W \)
- \(F,W,B \)
- None

9. Which of the following represents a unit of torque?

- Slugs
- Foot\(\cdot\)pounds (ft\(\cdot\)lb)
- Feet / second\(\cdot\)(ft/s)
- Newtons
- Fathoms

10. The wheelbarrow in 8., above, has been lifted. Force \(F \) is 50 pounds, and weight \(W \) is 70 pounds. What is the net moment about the axel of the wheel due to those two forces?

- 2320 in\(\cdot\)lb clockwise
- 2320 ft\(\cdot\)lb counter-clockwise
- 3300 in\(\cdot\)lb clockwise
- 4280 in\(\cdot\)lb counter-clockwise
- 4280 in\(\cdot\)lb clockwise