Intuitive Surgical - Overview

- Founded in 1995
 - Employs ~1100 people worldwide, ~1000 people in the US
 - Publicly-traded company, NASDAQ “ISRG”
- Intuitive’s da Vinci systems used in 136,000 procedures performed in 2008, up 60% from 2007
 - Q109 procedures up approximately 60% from Q108
- 1,171 da Vinci® System base as of 3/31/09
 - 863 United States, 211 Europe, 97 Rest of World
- FDA Clearances - Laparoscopic, Thoracoscopic, Prostatectomy, Cardiotomy, Revascularization, Urology, Gynecology, Pediatric
- Target Markets - Urology, Gynecology, Cardiothoracic, General Surgery
Medical-Surgical Robotics

Definition
- The use of computer-controlled mechanisms to improve therapeutic outcomes

Types of Medical-Surgical Robots
- Medical and Surgical Aids - Surgery and patient care
- Radiation Therapy Robots - Accurate therapy delivery
- Guidance and Positioning Robots - Hands-on manipulator control
- Surgical Tele-robots - Human-in-control

Value Proposition: Better therapeutic outcomes resulting from initial capital investment
- Better tissue targeting - higher precision
- Less invasive procedures - smaller access
- Reduced complications when compared to non-robotic procedures
The Medical-Surgical Robotics Landscape (1)

Medical and Surgical Robotic Aids

- Rounding Robots
 - InTouch RP7

- MIS Scope Holders
 - Prosurgics EndoAssist

Radiation Therapy Robots

- Radiation Control Robots
 - Accuray Cyberknife
The Medical-Surgical Robotics Landscape (2)

Guidance & Positioning Robots
 Image-Guided Robots
 - CUREXO Robodoc
 - Mazor SpineAssist
 Hand Guidance/Haptic Walls
 - MAKO Surgical

Surgical Tele-Robots
 Catheter Guidance Robots
 - Hansen Sensei
 - Stereotaxis Niobe
 Minimally Invasive Robots
 - Intuitive Surgical da Vinci
Example: Intuitive’s da Vinci® Si Tele-robot

Vision
- 3D-HD view of the surgical field

Dexterity
- Greater range of motion than the human wrist

Precision
- Tremor reduction, motion scaling

Ergonomics
- Improved positioning & surgeon comfort

da Vinci® Si- Video Overview
Drivers for Adoption of Robotic Surgery

Patient Value = \(\frac{\text{Efficacy}}{\text{Invasiveness}^2}\)

Surgeon Value = Patient Value + ease-of-use + dependability + shorter length-of-stay (LOS)

Hospital Value = Patient Value + Surgeon Value + economic benefits for the hospital

Economic Value = Improved outcomes + fewer complications + reduced LOS + fewer readmissions + faster return to normal activities
Reported Clinical Benefits of *da Vinci®* Procedures Versus Open Surgery

Greater Efficacy
- Improved cancer control\(^1\)
- Increased continence\(^2\)
- Enhanced sexual potency\(^3\)

Reduced Invasiveness
- Reduced pain\(^3\)
- Reduced blood loss\(^4\)
- Reduced length of stay\(^4\)

* Comparative prostatectomy results from: Bhandari A, J Urology 2000; Brown JA, Urologic Oncology, 2004; Guillonneau B, Jnl of Urology, 2002.*
Annual Worldwide daVinci Procedures

Cumulative total of ~300,000 da Vinci patients through 2008, reaching >500,000 patients in early 2010*

* Forecasts based on Company estimates.
<table>
<thead>
<tr>
<th>Urology</th>
<th>Gynecology</th>
<th>Cardiothoracic</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostatectomy</td>
<td>Hysterectomy</td>
<td>Mitral Valve Repair & Replacement</td>
<td>Gastric Bypass</td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>Myomectomy</td>
<td>Single Vessel Beating Heart Bypass</td>
<td>Nissen Fundoplication</td>
</tr>
<tr>
<td>Partial Nephrectomy</td>
<td>Sacral Colpopexy</td>
<td>Multi-Vessel Beating Heart Bypass</td>
<td>Heller Myotomy</td>
</tr>
<tr>
<td>Pyeloplasty</td>
<td>Pelvic Lymphadenectomy</td>
<td>Single Vessel Arrested Heart Bypass</td>
<td>Gastrectomy</td>
</tr>
<tr>
<td>Cystectomy</td>
<td>Tubal Reanastomosis</td>
<td>Multi-Vessel Arrested Heart Bypass</td>
<td>Colon Resection</td>
</tr>
<tr>
<td>Donor Nephrectomy</td>
<td>Vaginal Prolapse Repair</td>
<td>IMA Harvesting</td>
<td>Thyroidectomy</td>
</tr>
<tr>
<td>Ureterolithotomy</td>
<td>Dermoid Cyst</td>
<td>Coronary Anastomosis</td>
<td>Arteriovenous Fistula</td>
</tr>
<tr>
<td>Pelvic Lymphadenectomy</td>
<td>Endometrial Ablation</td>
<td>Atrial Septum Aneurysm</td>
<td>Toupet</td>
</tr>
<tr>
<td>Adrenalectomy</td>
<td>Oophorocystectomy</td>
<td>Atrial Septal Defect Repair</td>
<td>Pancreatectomy</td>
</tr>
<tr>
<td>Cystocele Repair</td>
<td>Oophorectomy</td>
<td>Tricuspid Valve Repair</td>
<td>Adrenalectomy</td>
</tr>
<tr>
<td>Excision of Renal Cyst</td>
<td>Ovarian Cystectomy</td>
<td>Thrombectomy</td>
<td>Hemi-Colectomy</td>
</tr>
<tr>
<td>Lymphadenectomy</td>
<td>Ovarian Transposition</td>
<td>Thymectomy</td>
<td>Sigmoidectomy</td>
</tr>
<tr>
<td>Testicular Resection</td>
<td>Salpingectomy</td>
<td>Esophagectomy</td>
<td>Splenectomy</td>
</tr>
<tr>
<td>Renal Cyst Decortication</td>
<td>Salpingo-Oophorectomy</td>
<td>Pericardial Window</td>
<td>Pyloroplasty</td>
</tr>
<tr>
<td>Ureteral Transplant</td>
<td>Colposuspension (Burch)</td>
<td>Lobectomy</td>
<td>Gastroplasty</td>
</tr>
<tr>
<td>Nephropexy</td>
<td>Tubal Ligation</td>
<td>Pneumonectomy</td>
<td>Appendectomy</td>
</tr>
<tr>
<td>Ureterectomy</td>
<td>Tubal Ligation</td>
<td>Pacemaker Lead Implantation</td>
<td>Intra-rectal Surgery</td>
</tr>
<tr>
<td>Rectocele Repair</td>
<td>Tubal Ligation</td>
<td>Mediastinal Resection</td>
<td>Bowel Resection</td>
</tr>
<tr>
<td>Varicocele</td>
<td></td>
<td>Pulmonary Wedge Resection</td>
<td>Lumbar Sympathectomy</td>
</tr>
<tr>
<td>Ureteroplasty</td>
<td></td>
<td></td>
<td>Liver Resection</td>
</tr>
<tr>
<td>Ureteral Implantation</td>
<td></td>
<td></td>
<td>Cholecystectomy</td>
</tr>
<tr>
<td>Vaso-vasostomy</td>
<td></td>
<td></td>
<td>Hernia Repair</td>
</tr>
</tbody>
</table>

Procedures Performed with daVinci

- Urology
- Gynecology
- Cardiothoracic
- General
Where Are We Now?

- **Growing Market**
 - 6 companies in the US market today
 - Many more working to bring new products to the market

- **Substantive and Growing Clinical Literature**
 - Over 1400 articles demonstrating equivalent or better outcomes, decreased trauma and decreased complication rates across many different procedures

- **Compelling Value Proposition**
 - Initial capital investments result in reduced hospital stays, decreased complication rates leading to decreases in re-admissions, and faster return to normal life for patients
 - Primary savings from hospital operating costs, increased productivity, and avoided cost of capital for hospital facilities
 - Within a few years, and with modest assumptions, net benefits in the US would total billions of dollars annually
Medical Robotics Presents a Substantial Opportunity

- Medical Tele-robots alone could be a $4 Billion annual industry
- Government sponsored programs exist to create medical robots to compete in world markets in at least
 - Japan
 - Canada
 - Korea
 - Singapore
 - Great Britain
 - France
 - Germany
What Does the Future Hold?

Future Innovations in Surgical Robotics...
- Improved capability through fewer, smaller incisions
- Integrated imaging for diagnostics and therapeutics
- Advanced delivery of focal therapies

Leading to More Applications, Increased Benefits...
- Expanded set of robotic-minimally invasive procedures
- Greater access to higher quality care—for rural and smaller urban areas, and in military uses, e.g., bases and naval ships
- Improved healthcare outcomes overall
- Broader economic benefits
What Was Required for Early Entrants to Get Here?

Coordinated Public-Private Effort
- Collaborative projects with early government support laid the foundation for a new industry

Long-Range Vision for Government and Investors
- Intuitive’s evolution (and that of other surgical robotics companies) depended on “patient” investment

Hospital Vision in Adopting Innovative Technologies
- Early adopters provided patients with new treatment options while ensuring safety, efficacy, and cost-effectiveness
- Leaders “saw beyond” accounting practices that distort the impact of new technologies and fail to account for patient benefits
What Does the Industry Need Moving Forward?

Strong Commitments to Technology Leadership
- Delivering globally competitive medical robots will require on-going R&D and commercialization-focused investment

Cross-Agency Coordination and Support
- Surgical robotic technologies cut across a variety of disciplines and agency missions, making coordination of efforts essential

Thoughtful Approaches to Comparative Effectiveness Research and Healthcare Economics
- Robotics demonstrates increased clinical performance AND reduced end-to-end cost to treat—a cross-treatment-cycle view of costs and benefits is required
Thank You